Consistent order estimation for nonparametric hidden Markov models
نویسندگان
چکیده
منابع مشابه
Estimation of Hidden Markov Models with Nonparametric Simulated Maximum Likelihood
We propose a nonparametric simulated maximum likelihood estimation (NPSMLE) with built-in nonlinear ltering. By recursively approximating the unknown conditional densities, our method enables a maximum likelihood estimation of general dynamic models with latent variables including time-inhomogeneous and non-stationary processes. We establish the asymptotic properties of the NPSMLEs for hidden...
متن کاملMinimax Adaptive Estimation of Nonparametric Hidden Markov Models
We consider stationary hidden Markov models with finite state space and nonparametric modeling of the emission distributions. It has remained unknown until very recently that such models are identifiable. In this paper, we propose a new penalized least-squares estimator for the emission distributions which is statistically optimal and practically tractable. We prove a non asymptotic oracle ineq...
متن کاملSupplement paper to ‘ Nonparametric estimation in hidden Markov models ’
This document is a supplementary material to the article “Nonparametric estimation using partially observed Markov chains”. It provides additional proofs of some technical results given in the original paper. Section 1 recalls the model, the definitions and the assumptions used in the paper. Section 2 provides proofs of some results stated in the paper and Section 3 gives details on the algorit...
متن کاملThree techniques for state order estimation of hidden Markov models
In this contribution three examples of techniques that can be used for state order estimation of hidden Markov models are given. The methods are also exem-pliied using real laser range data, and the computational burden of the three methods is discussed. Two techniques, Maximum Description Length and Maximum a Posteriori Estimate, are shown to be very similar under certain circumstances. The th...
متن کاملConsistency of Bayesian nonparametric Hidden Markov Models
We are interested in Bayesian nonparametric Hidden Markov Models. More precisely, we are going to prove the consistency of these models under appropriate conditions on the prior distribution and when the number of states of the Markov Chain is finite and known. Our approach is based on exponential forgetting and usual Bayesian consistency techniques.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2019
ISSN: 1350-7265
DOI: 10.3150/17-bej993